CS 59300 — Algorithms for Data Science
Classical and Quantum approaches

Lecture 10 (10/07)
Sum-of-Squares (l11)

https://ruizhezhang. comlcourse fall 2025 htmi

- The slides is partly based on Ojas Parekh’s talk



https://ruizhezhang.com/course_fall_2025.html

What is quantum optimization?

Classical approaches for quantum

I
é Classical optimization Hamiltonians (DMRG, mean-field
- N methods, everything else)
i -
=
o
60 :
< Quantum approaches for discrete
E Hamiltonians) Hamiltonians (e.g. AQC, QAOA for
= . .
O  Quantum approaches for continuous quantum Hamiltonians)

optimization

Classical Quantum
Problem
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(Classical) Max Cut

Given a graph G(V, E), find a partition f:V —
{+1, —1} maximizing

z (1 - f;i)f(i)>

ijEE
F@) # G

One of Karp’s 21 NP-complete problems

0.878-approximation by Goemans and
Williamson using SDP and randomized rounding

October 9, 2025

Max-cut = 8



Interlude: Approximation algorithm

An a-approximation algorithm runs in polynomial time, and for any instance I, delivers an
approximate solution such that:

Value(Approximation;)

>
Value(Optimal;)

Approximation algorithm = Relaxation + Rounding

The approximation ratio can be lower bounded by:

~ Value(Approximation;)
p = min : =«
1 fValue(Relaxation;)

Integrality gap (barrier of the specific relaxation proof)

~ Value(Optimal,;)
min . = p
I fValue(Relaxation;)
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Goemans-Williamson algorithm

Relaxation:
For each vertex i € V, assign v; € R
max z (1- (vi,vj))/Z

(i,j)eEE
s.t. lvll=1Vviev

Gaussian rounding:
Sample a unit vector g € R4

0; < sign({g,v;)) VieV

October 9, 2025 6

Solving SDP:

max (—A;/2,X)

s.t. Xy;=1VieV
X=0

Cholesky decomposition:




(Classical) Max Cut

Given a graph G(V, E), find a partition f:V —
{+1, —1} maximizing

z (1 - f;i)f(i)>

ijEE
F@) # G

One of Karp’s 21 NP-complete problems

0.878-approximation by Goemans and
Williamson using SDP and randomized rounding

Max-cut = 8

What is the quantum version of Max Cut?
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Pauli matrices

=l 3 x=l o v=l G 2=l 2

{I,X,Y,Z}is a basis for 2 X 2 Hermitian matrices
X2=Y2=7%=]
Commutator and anticommutator: [A,B] := AB — BA and {A,B}:= AB + BA
[X,Y]=2iz, [V,Z]=2iX, [Z X]=2iY
X,Y}={v,Z2} ={Z,X}=0 “swap flips the sign”

Each of X, Y, Z has one eigenvalue +1 and one eigenvalue —1
(their eigenvectors are called X-basis, Y-basis, Z-basis)

10) + |1) 10) — [1)

X-basis:  |+) = N |—) = 7
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Pauli matrices (multiple qubits)

=l 3 x=l ol v=R S 2=l

For an n-qubit system, we use g; for g € {X,Y, Z} to denote applying ¢ to the i-th qubit:
IQ - QRIQcRIQ QI € C¥*"

Pauli polynomial
A monomial T = 0,0, -+ o, With o; € {I,X;,Y;, Z;}
deg(7) = [{i € [n]: g; # I}
P, (k) is the set of monomials of degree at most k

A Pauli polynomial is a real linear combination of monomials; its degree is the maximal degree over its

terms Hermitian operator
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Quantum Max-Cut (QMC)

Let G = (V,E) be a graph

QMC is a special case of 2-local Hamiltonian problem:

Compute 1,,.x(H) H = Z hij,

October 9, 2025

ijEE

1) 10)
or

10) |1)

(classical) Max-Cut

where h =

10

1
4

N =

(I—-XX—-YY—-22)

- (101) — [10) (01| — (100)

00 01 10 11
oo 0O ]
01 1 -1
10 1 1
1| 0 |




Quantum Max-Cut (QMC)

Let G = (V,E) be a graph

QMC is a special case of 2-local Hamiltonian problem:

1
Compute 1,,.x(H) H = Z hij, where h = i (I—-XX-YY—-Z7)
ijEE
1
=7 (101) — [10)) (01| —(10])
101) — |10) 00 01 10 11
V2 00 [0 '
O O 01 1 -1
10 -1 1
quantum Max-Cut 111 0 .

“Entangled assignment” gets
max value
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Quantum Max-Cut (QMC)

Let G = (V,E) be a graph

QMC is a special case of 2-local Hamiltonian problem:

1
Compute 1,,.x(H) H = Z hij, where h = i I+-XX-YY—-2727)
ijEE

Term 1: does nothing

O O

gquantum Max-Cut
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Quantum Max-Cut (QMC)

Let G = (V,E) be a graph

QMC is a special case of 2-local Hamiltonian problem:

Compute 1,,.x(H) H = Z hij,

ijEE

X X

O O

gquantum Max-Cut

October 9, 2025

1
where h=Z-(1—XX

—YY - 272)

Term 1: does nothing

Term 2: measure in X basis

13

« —1ifsame (+ 4+ or — —)

- +1 if same (+ — or — +)



Quantum Max-Cut (QMC)

Let G = (V,E) be a graph

QMC is a special case of 2-local Hamiltonian problem:

1
Compute 1,,.x(H) H = Z hij, where h = i (|- XX|-YY —-Z227)

ijEE
X X .
Term 1: does nothing
O O Term 2: should be different in X-basis

gquantum Max-Cut
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Quantum Max-Cut (QMC)

Let G = (V,E) be a graph

QMC is a special case of 2-local Hamiltonian problem:

1
Compute 1,,.x(H) H = Z hij, where h = i (I —XX|—-YY|-Z22Z)

ijEE
Y Y .
Term 1: does nothing
O O Term 2: should be different in X-basis

guantum Max-Cut Term 3: should be different in Y-basis
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Quantum Max-Cut (QMC)

Let G = (V,E) be a graph

QMC is a special case of 2-local Hamiltonian problem:

Compute 1,,.x(H) H = Z hij,

Like (classical) Max-Cut in X, Y,

October 9, 2025

ijEE

Z Z

O O

gquantum Max-Cut

and Z basis

where h =

16

(I—-XX-YY\—-Z7)

Term 1: does nothing
Term 2: should be different in X-basis
Term 3: should be different in Y-basis

Term 4: should be different in Z-basis



Interlude: Quantum Lasserre hierarchy (ncSoS)

Also called non-commutative sum-of-squares hierarchy
Introduced by Navascués, Pironio, and Acin (NPA hierarchy)

Pseudo-density

Cz"xz"

A k-positive pseudo-density p € isa 2™ X 2™ Hermitian matrix

tr[p] =1
tr[pP?] = 0, V Pauli polynomial P of degree < k
We use D,, (k) to denote the set of k-positive pseudo-density operators

Level k of the quantum Lasserre hierarchy finds an optimal k-positive pseudo-density matrix:

v(H) == _max tr[Hp] = Ayax(H)
PEDK(n)

Convergence: v, (H) = vj.1(H) = - = v,,(H) = Apax(H)

“tighter and tighter upper-bound”
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Quantum Lasserre hierarchy

Let p be the optimal pseudo-density solution to £, (level k Quantum Lasserre)

For each Pauli monomial 7, define its relaxed value to be
(1) == tr|pT] “pseudoexpectation”

For QMC, v (H) can be written as:

v = Y (1= (XX) = (0) - (2:))

ijEE
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Solve quantum Lasserre hierarchy

Pseudoexpectation program

ve(H) =max > c(@)) ve(H) =max > c(9)@)
PEPL(2k) PEP, (2k)
Variables: {{t) : T € P,,(2k)} Variables: {|t) € C*:t € P,(k)}
Constraints: (any d = [P, (k)])
Iy =1 Constraints:
R0 5 00) . - (t]lt) =1
M, €C : M (0,7) = (oT) for any
0,7 € P,(k) - (t]o) = (t0)
My, =0

_ > They yield the same SDP
Other symmetries
> Vector version is more convenient for rounding
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Parallels between MC and QMC: relaxation

October 9, 2025

Vpc = max E

S.T.

1—(Z;|Z))

iJEE
(Z;1Z;) =1
1Z;) € R?

2

VieVlV
VieV

Quantum Max Cut (L)

_ 1—(Xi|X;) = (vi|v;) = {Z|Z;)
Vomc = maxZ 1
ijEE
s.t. (tlt;)=1 VieV,te{XVY, 7}
(t;lo;) =0 VvieV,t,oe{X,Y,Z},t# o
lT;)eR? VieV,te{X,Y,Z}

1 — 3(W;|W;
v = ma 3 1= 30
ijEE

s.t. (Wiwy))=1  Vviev
W,)eRY VieV
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Parallels between MC and QMC: rounding

algorithms

Input: |Z;) € R% foreachi € V
1. Sample |r) ~ N(0,])
2. Outputu; = sgn((Z;|r)) € {£1}

Goemans-Williamson

October 9, 2025

Quantum Max Cut (£,)

Input: |W;) € R® foreachi € V
1.  Sample |r), |ry), I,) ~ N(0,1)
2. Outputu; == Unit((Wilrx), (Wi|ry), (Wilrz))
1
pi = 5(1 + (U1 X; + (w)2Y;

+(u;)3Z;)

(p; is a pure state)

©
|
2

product state

21



Parallels between MC and QMC: unified analysis

Input: |Z;) € R% foreachi € V

1. Sample |r) ~ N(0,])

2. Output u; == Unit((Z;|r)) € {+1}

O

val = (1

O

— uiuj)/Z

(Zilry  (Zi]r)

E|uu| =E L

October 9, 2025

(Zr) Uz

Quantum Max Cut (L)

Input: |W;) € R? foreachi € V
1.  Sample |r), |ry), I,) ~ N(0,1)

2. Outputu; == Unit((Wilrx), (Wi|ry), (Wilrz))

O O

val = (1 — (ui,uj))/4

o R|W;) R|VV1>
Ep—(ry 1y r) [0 5)] = E [<||R|Wi>ll ’ ||R|Wf>||>]
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Parallels between MC and QMC: unified analysis

Quantum Max Cut (L)

Input: |Z;) € R% foreachi € V Input: |W;) € R% foreachi € V
1.  Sample |r) ~ N(0,1) 1. Sample |r), |ry), |,) ~ N(0,1)
2. Output u; = Unit({Z;|r)) € {£1} 2. Output u; = Unit((W;|r), (Wi|ry), (W; 1))

Lemma (Briét et al. "14). Let u, v be unit vectors in R? and let R € R¥*? be a random matrix whose entries

are i.i.d. Gaussian V'(0,1). Then,
Ru Rv
E )
IRu||” [|Rv||

= F(k,(u,v))

Some hypergeometric function (explicitly
computable)
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Parallels between MC and QMC: unified analysis

Input: |Z;) € R% foreachi € V

1. Sample |r) ~ N(0,])

2. Output u; == Unit((Z;|r)) € {+1}

O

E,[val] =

October 9, 2025

O

1- F(L(71)

Quantum Max Cut (L)

Input: |W;) € R? foreachi € V
1.  Sample |r), |ry), I,) ~ N(0,1)

2. Outputu; == Unit((Wilrx), (Wi|ry), (Wilrz))

O O

1= F(3, (Wilw)))

T Ty Tz [val] =

24



Parallels between MC and QMC: unified analysis

Input: |Z;) € R% foreachi € V

1. Sample |r) ~ N(0,])

2. Output u; == Unit((Z;|r)) € {+1}

October 9, 2025

Quantum Max Cut (L)

Input: |W;) € R? foreachi € V
1.  Sample |r), |ry), I,) ~ N(0,1)

2. Outputu; == Unit((Wilrx), (Wi|ry), (Wilrz))

O O

[Erx,ry,rz [val] . 1—-F(@3,¢t)
=  min
fval te[-1,1/3] 1 — 3t

~ (0.498

a =

25



Can we do better?

Classical max cut: No.

Khot-Kindler-Mossel-O'Donnell ‘07: Assuming Unique Game Conjecture, it is NP-hard to achieve
(0.878+¢€)-approximation for MC

Raghavendra ’08, Raghavendra-Steurer '09: Degree-2 SoS (level 1 SDP) is the best approximation
algorithm for all constraints satisfaction problems (CSPs), assuming UGC

Quantum max cut: possible!

If only using product state, the approximation ratio upper bound is 0.5 > 0.498

O O

val = (1 - (ui,uj))/4 <0.5

opt=1
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Towards better approximation

5 _
H(f) llF(gtt)
4 u
3l y = —0.919 ... is a critical point
T
2 u
Edges with (W;|W;) > y have
L : 1
1k approximation ratio = >
:0.919.05) T _____

0 —1* -0.8 —0.6 -0.4 -0.2 0.0 0.2

t

October 9, 2025 27



Partial rounding

Case 1: “small” edges

(W;|W;) € [-1,y)

—(1-2,Z;
Q Q direct assignment Q 2( %) Q
10) ® 1) wp. 1/2
|1) X |0)  w.p. 1/2
Case 2: “large” edges a=1/2
(Wi [w;) € [y, 1/3) | |
Gaussian rounding Pi Pj
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Conflict vertices

? ?

small small large small

X

Fact. The small edges form a matching in
the graph
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Conflict vertices

?

small small

X

Fact. The small edges form a matching in
the graph
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Conflict vertices

?

small small

X

Fact. The small edges form a matching in
the graph

We round a vertex only it does not
adjacent to any small edge
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Conflict vertices

Two qubits i and j are not entangled
p; =1 (i.e. |0) w.p.0.5and |1) w.p. 0.5)
Then, no matter what pj is,

val = tr[hijpl- X pj] =1/4

We need to show that the SDP value fval < 1/2 for
this edge:

Lemma. If an edge ik has (W;|W},) < y, then any
adjacent edge ij has (WL|WJ) > —-1/3

Pj

> fval = (1-3(W:|w;))/4 < 1/2
We round a large edge only if it does

not intersect with any small edge » The small edges form a matching
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Full algorithm

1.  Solve the level 2 quantum Lasserre hierarchy L, for H
2. Let S be the set of small edges
3. LetB:=={i€V:Vj,ij &S}

4. Gaussian rounding for i € B, and let p; be the resulting state

— ZiZ;
p = ® ® Pk (mixed) product state

LjEL keB

5. Output the state

Theorem (Parekh-Thompson ’22).

There exists an efficient classical algorithm that approximates QMC using product states and
achieves the optimal 1/2-approximation ratio
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Proof of the key lemma
Lemma. If an edge ij has (Wl|W]) < y, then any adjacent edge ik has (W;|W,) > —1/3

Physical intuition: Monogamy of entanglement

.’z(:+.\:
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Proof of the key lemma

Lemma. If an edge ij has (Wl|W]) < y, then any adjacent edge ik has (W;|W,) > —1/3

Definition 17 (Quantum Lasserre hierarchy). We are given as input H = Y ycp, (2x) ¢(¢) ¢, with
H € H,. Level k of the Quantum Lasserre hierarchy, denoted Ly, is defined by the following
vector program:

ve(H) :==max ) c(¢)(¢)

PPy (2Kk)
s.t. (t|T) =1 VT € Pu(k) (19)
(t|o) = (to) V71,0 € Py(k) (20)

Ty e C? VT € Pu(k),

for any integer d > |P,(k)|.

Unitary operator: §;; = (I + X, X; + VY, + ZL-Z]-)/Z
(Wiwj) = ((X:X;) + (ViY)) +(Z:2;)) /3 = (2(S;;) — 1)/3
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Proof of the key lemma
Lemma. If an edge ij has (Wl|W]) < y, then any adjacent edge ik has (W;|W,) > —1/3
Unitary operator: §;; = (I + X X; + VY, + ZL-Z]-)/Z

(Wi|w;) = ((X:X;) + (i) +(Z:2;)) /3 = (2(Si;) — 1)/3

(Wi W]) < y is equivalent to (Sij) <@By+1)/2

(W;|W,,) > —1/3 is equivalent to (S;;,) > 0

If (Sl-j) < (3y + 1)/2, then any adjacent edge ik has (S;;) > 0
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Proof of the key lemma

Consider the Gram matrix of |I), |S1,), [S13), |S23):
M(P,Q) =(P|Q) VP,Q €{l,S12, 513, 523}

By the PSD constraint in £,, M = 0 \degree—4 . N
DefineM :== (M +M")/2 € R¥*, M > 0 L
M(P,P) = (P?) + (P?))/2 = () = 1 poo1 2
M(Sy. I) = (Si;) M= g 21 4 i
M(Sij, Sire) = ((Sij) + (Sike) + (Sje) — (D)) /2 S i 1 s—1 j
r
- 2 2 S

Identity for SWAP operator:

_ p = (S12), 4 = (S13), 7 = (S23),
SijSire + SucSij = (Sij + Sire + Sjie = 1)/2 Y =p+i13+r 23
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Proof of the key lemma

Claim 1. M = 0is equivalent to:

0<p+q+r<3
p?+q’+r°+2(p+q+71r)—2(pg+pr+qr) <3

Schur complement:

For any symmetric matrix M of the form (1
M= (2 bCT) p

M = 0if and only if: M =

1. C*0 !

2 (I-CCHb=0 r

3. 1-b'C*th=0
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Proof of the key lemma
Lemma. If (Sl-j) < (3y + 1)/2, then any adjacent edge ik has (S;;) > 0

Proof.

Solving the inequalities:
0<p+q+r<3
p?+qg>+1r°+2(p+q+71)—2(g+pr+gqr) <3

We get that if p < —+/3/2, then g = 0 (equality attained with p = —+/3/2,9 = 0,7 =+/3/2)

Since 3y +1)/2 < —-0.878 < —? ~ —(0.866, we are done
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Approximation algorithms for quantum max cut

Reference | Ratio Remark

GP19| 0.498 General graphs, outputs product state
PT22] 1/2 General graphs, outputs product state
HTPG24| | 0.526 General graphs, uses SOC instead of SDP
AGM20| | 0.531 General graphs

PT21| 0.533 General graphs

Lee22| 0.562 General graphs

LP24] 0.595 General graphs

JKKT24] | 0.599 General graphs, improved analysis of |[LP24|
Thm. 3.11 | 0.603 General graphs, improved analysis of |[LP24|
Kin23| 0.582 Triangle-free graphs

Thm. 4.5 | 0.61383 Triangle-free graphs

Kin23| % ~ (0.707 | Bipartite graphs

Thm. 5.6 | 0.8162 Bipartite graphs

(Gribling-Sinjorgo-Sotirov ’25)
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