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What is quantum optimization?
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Classical optimization
Classical approaches for quantum 
Hamiltonians (DMRG, mean-field 

methods, everything else)

Quantum approaches for discrete 
optimization (AQC, QAOA for quantum 

Hamiltonians)

Quantum approaches for continuous 
optimization

Quantum approaches for quantum 
Hamiltonians (e.g. AQC, QAOA for 

quantum Hamiltonians)
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(Classical) Max Cut
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Given a graph 𝐺𝐺 𝑉𝑉,𝐸𝐸 , find a partition 𝑓𝑓:𝑉𝑉 →
{+1,−1} maximizing

�
𝑖𝑖𝑖𝑖∈𝐸𝐸

1 − 𝑓𝑓 𝑖𝑖 𝑓𝑓 𝑗𝑗
2

• One of Karp’s 21 NP-complete problems

• 0.878-approximation by Goemans and 
Williamson using SDP and randomized rounding
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“𝑓𝑓 𝑖𝑖 ≠ 𝑓𝑓 𝑗𝑗 ”



Interlude: Approximation algorithm
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An 𝛼𝛼-approximation algorithm runs in polynomial time, and for any instance 𝐼𝐼, delivers an 
approximate solution such that:

Value(Approximation𝐼𝐼)
Value(Optimal𝐼𝐼)

≥ 𝛼𝛼

Approximation algorithm = Relaxation + Rounding

• The approximation ratio can be lower bounded by:

𝜌𝜌 ≔ min
𝐼𝐼

Value Approximation𝐼𝐼
fValue Relaxation𝐼𝐼

≤ 𝛼𝛼

• Integrality gap (barrier of the specific relaxation proof)

min
𝐼𝐼

Value Optimal𝐼𝐼
fValue Relaxation𝐼𝐼

≥ 𝜌𝜌



Goemans-Williamson algorithm
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Relaxation: 

For each vertex 𝑖𝑖 ∈ 𝑉𝑉, assign 𝑣𝑣𝑖𝑖 ∈ ℝ𝑑𝑑

max  �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

⁄1 − 𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 2

𝑠𝑠. 𝑡𝑡.  𝑣𝑣𝑖𝑖 = 1 ∀𝑖𝑖 ∈ 𝑉𝑉

Solving SDP:
max  − ⁄𝐴𝐴𝐺𝐺 2 ,𝑋𝑋

𝑠𝑠. 𝑡𝑡.  𝑋𝑋𝑖𝑖𝑖𝑖 = 1 ∀𝑖𝑖 ∈ 𝑉𝑉

 𝑋𝑋 ≽ 0

Cholesky decomposition:

𝑋𝑋 =

− 𝑣𝑣1⊤ −
− 𝑣𝑣2⊤ −

⋮
− 𝑣𝑣𝑛𝑛⊤ −

⋅
|
𝑣𝑣1
|

|
𝑣𝑣2
|

⋯
|
𝑣𝑣𝑛𝑛
|

Gaussian rounding:

• Sample a unit vector 𝑔𝑔 ∈ ℝ𝑑𝑑

• 𝜎𝜎𝑖𝑖 ← sign 𝑔𝑔, 𝑣𝑣𝑖𝑖   ∀𝑖𝑖 ∈ 𝑉𝑉



(Classical) Max Cut
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Given a graph 𝐺𝐺 𝑉𝑉,𝐸𝐸 , find a partition 𝑓𝑓:𝑉𝑉 →
{+1,−1} maximizing

�
𝑖𝑖𝑖𝑖∈𝐸𝐸

1 − 𝑓𝑓 𝑖𝑖 𝑓𝑓 𝑗𝑗
2

• One of Karp’s 21 NP-complete problems

• 0.878-approximation by Goemans and 
Williamson using SDP and randomized rounding

1

3 5

7

62

4

Max-cut = 8

+1 +1

+1

−1

−1 −1

−1

“𝑓𝑓 𝑖𝑖 ≠ 𝑓𝑓 𝑗𝑗 ”

What is the quantum version of Max Cut?



Pauli matrices
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𝐼𝐼 = 1 0
0 1 , 𝑋𝑋 = 0 1

1 0 , 𝑌𝑌 = 0 −𝐢𝐢
𝐢𝐢 0 ,  𝑍𝑍 = 1 0

0 −1
• 𝐼𝐼,𝑋𝑋,𝑌𝑌,𝑍𝑍  is a basis for 2 × 2 Hermitian matrices

• 𝑋𝑋2 = 𝑌𝑌2 = 𝑍𝑍2 = 𝐼𝐼

• Commutator and anticommutator:  𝐴𝐴,𝐵𝐵 ≔ 𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵  and  𝐴𝐴,𝐵𝐵 ≔ 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵
𝑋𝑋,𝑌𝑌 = 2𝐢𝐢𝑍𝑍, 𝑌𝑌,𝑍𝑍 = 2𝐢𝐢𝑋𝑋, 𝑍𝑍,𝑋𝑋 = 2𝐢𝐢𝑌𝑌

𝑋𝑋,𝑌𝑌 = 𝑌𝑌,𝑍𝑍 = 𝑍𝑍,𝑋𝑋 = 0

• Each of 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 has one eigenvalue +1 and one eigenvalue −1
(their eigenvectors are called 𝑋𝑋-basis, 𝑌𝑌-basis, 𝑍𝑍-basis)

“swap flips the sign”

+ =
0 + 1

2
,  − =

0 − 1
2

𝑋𝑋-basis: 



Pauli matrices (multiple qubits)
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𝐼𝐼 = 1 0
0 1 , 𝑋𝑋 = 0 1

1 0 , 𝑌𝑌 = 0 −𝐢𝐢
𝐢𝐢 0 ,  𝑍𝑍 = 1 0

0 −1

• For an 𝑛𝑛-qubit system, we use 𝜎𝜎𝑖𝑖 for 𝜎𝜎 ∈ 𝑋𝑋,𝑌𝑌,𝑍𝑍  to denote applying 𝜎𝜎 to the 𝑖𝑖-th qubit:
𝐼𝐼 ⊗⋯⊗ 𝐼𝐼 ⊗ 𝜎𝜎⊗ 𝐼𝐼 ⊗⋯⊗ 𝐼𝐼 ∈ ℂ2𝑛𝑛×2𝑛𝑛

Pauli polynomial

• A monomial 𝜏𝜏 = 𝜎𝜎1𝜎𝜎2 ⋯𝜎𝜎𝑛𝑛 with 𝜎𝜎𝑖𝑖 ∈ 𝐼𝐼,𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝑍𝑍𝑖𝑖

• deg 𝜏𝜏 = 𝑖𝑖 ∈ 𝑛𝑛 :𝜎𝜎𝑖𝑖 ≠ 𝐼𝐼  

• 𝒫𝒫𝑛𝑛 𝑘𝑘  is the set of monomials of degree at most 𝑘𝑘

• A Pauli polynomial is a real linear combination of monomials; its degree is the maximal degree over its 
terms Hermitian operator



Quantum Max-Cut (QMC)
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• Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  be a graph

• QMC is a special case of 2-local Hamiltonian problem:

𝐻𝐻 = �
𝑖𝑖𝑖𝑖∈𝐸𝐸

ℎ𝑖𝑖𝑖𝑖 , where ℎ =
1
4
⋅ 𝐼𝐼 − 𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌 − 𝑍𝑍𝑍𝑍

=
1
2
⋅ 01 − 10 01 − 10

0
1 −1
−1 1

0

00 01 10 11
00
01
10
11(classical) Max-Cut

|0⟩ 1

|1⟩ 0
or

Compute 𝜆𝜆max 𝐻𝐻



Quantum Max-Cut (QMC)
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• Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  be a graph

• QMC is a special case of 2-local Hamiltonian problem:

𝐻𝐻 = �
𝑖𝑖𝑖𝑖∈𝐸𝐸

ℎ𝑖𝑖𝑖𝑖 , where ℎ =
1
4
⋅ 𝐼𝐼 − 𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌 − 𝑍𝑍𝑍𝑍

=
1
2
⋅ 01 − 10 01 − 10

0
1 −1
−1 1

0

00 01 10 11
00
01
10
11quantum Max-Cut

01 − 10
2

“Entangled assignment” gets 
max value

Compute 𝜆𝜆max 𝐻𝐻



Quantum Max-Cut (QMC)
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• Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  be a graph

• QMC is a special case of 2-local Hamiltonian problem:

𝐻𝐻 = �
𝑖𝑖𝑖𝑖∈𝐸𝐸

ℎ𝑖𝑖𝑖𝑖 , where ℎ =
1
4
⋅ 𝐼𝐼 − 𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌 − 𝑍𝑍𝑍𝑍

quantum Max-Cut

Term 1: does nothing

Compute 𝜆𝜆max 𝐻𝐻



Quantum Max-Cut (QMC)
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• Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  be a graph

• QMC is a special case of 2-local Hamiltonian problem:

𝐻𝐻 = �
𝑖𝑖𝑖𝑖∈𝐸𝐸

ℎ𝑖𝑖𝑖𝑖 , where ℎ =
1
4
⋅ 𝐼𝐼 − 𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌 − 𝑍𝑍𝑍𝑍

quantum Max-Cut

Term 1: does nothing

Term 2: measure in 𝑋𝑋 basis

• −1 if same (+ + or −−)

• +1 if same (+ − or − +)

𝑋𝑋 𝑋𝑋

Compute 𝜆𝜆max 𝐻𝐻



Quantum Max-Cut (QMC)
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• Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  be a graph

• QMC is a special case of 2-local Hamiltonian problem:

𝐻𝐻 = �
𝑖𝑖𝑖𝑖∈𝐸𝐸

ℎ𝑖𝑖𝑖𝑖 , where ℎ =
1
4
⋅ 𝐼𝐼 − 𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌 − 𝑍𝑍𝑍𝑍

quantum Max-Cut

Term 1: does nothing

Term 2: should be different in 𝑋𝑋-basis

𝑋𝑋 𝑋𝑋

Compute 𝜆𝜆max 𝐻𝐻



Quantum Max-Cut (QMC)
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• Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  be a graph

• QMC is a special case of 2-local Hamiltonian problem:

𝐻𝐻 = �
𝑖𝑖𝑖𝑖∈𝐸𝐸

ℎ𝑖𝑖𝑖𝑖 , where ℎ =
1
4
⋅ 𝐼𝐼 − 𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌 − 𝑍𝑍𝑍𝑍

quantum Max-Cut

Term 1: does nothing

Term 2: should be different in 𝑋𝑋-basis

Term 3: should be different in 𝑌𝑌-basis

𝑌𝑌 𝑌𝑌

Compute 𝜆𝜆max 𝐻𝐻



Quantum Max-Cut (QMC)
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• Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  be a graph

• QMC is a special case of 2-local Hamiltonian problem:

𝐻𝐻 = �
𝑖𝑖𝑖𝑖∈𝐸𝐸

ℎ𝑖𝑖𝑖𝑖 , where ℎ =
1
4
⋅ 𝐼𝐼 − 𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌 − 𝑍𝑍𝑍𝑍

quantum Max-Cut

Term 1: does nothing

Term 2: should be different in 𝑋𝑋-basis

Term 3: should be different in 𝑌𝑌-basis

Term 4: should be different in 𝑍𝑍-basis

𝑍𝑍 𝑍𝑍

Like (classical) Max-Cut in 𝑋𝑋, 𝑌𝑌, 
and 𝑍𝑍 basis

Compute 𝜆𝜆max 𝐻𝐻



Interlude: Quantum Lasserre hierarchy (ncSoS)
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• Also called non-commutative sum-of-squares hierarchy

• Introduced by Navascués, Pironio, and Acin (NPA hierarchy)

Pseudo-density

• A 𝑘𝑘-positive pseudo-density �𝜌𝜌 ∈ ℂ2𝑛𝑛×2𝑛𝑛 is a 2𝑛𝑛 × 2𝑛𝑛 Hermitian matrix

• tr �𝜌𝜌 = 1

• tr �𝜌𝜌𝑃𝑃2 ≥ 0,  ∀ Pauli polynomial 𝑃𝑃 of degree ≤ 𝑘𝑘

We use �𝒟𝒟𝑛𝑛 𝑘𝑘  to denote the set of 𝑘𝑘-positive pseudo-density operators

• Level 𝑘𝑘 of the quantum Lasserre hierarchy finds an optimal 𝑘𝑘-positive pseudo-density matrix:

𝑣𝑣𝑘𝑘 𝐻𝐻 ≔ max
�𝜌𝜌∈�𝒟𝒟𝑘𝑘 𝑛𝑛

tr 𝐻𝐻 �𝜌𝜌 ≥ 𝜆𝜆max 𝐻𝐻

• Convergence: 𝑣𝑣𝑘𝑘 𝐻𝐻 ≥ 𝑣𝑣𝑘𝑘+1 𝐻𝐻 ≥ ⋯ ≥ 𝑣𝑣𝑛𝑛 𝐻𝐻 = 𝜆𝜆max 𝐻𝐻

“tighter and tighter upper-bound”



Quantum Lasserre hierarchy
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• Let �𝜌𝜌 be the optimal pseudo-density solution to ℒ𝑘𝑘 (level 𝑘𝑘 Quantum Lasserre)

• For each Pauli monomial 𝜏𝜏, define its relaxed value to be
𝜏𝜏 ≔ tr �𝜌𝜌𝜏𝜏

• For QMC, 𝑣𝑣𝑘𝑘 𝐻𝐻  can be written as:

𝑣𝑣𝑘𝑘 𝐻𝐻 = �
𝑖𝑖𝑖𝑖∈𝐸𝐸

1
4

1 − 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 − 𝑌𝑌𝑖𝑖𝑌𝑌𝑗𝑗 − 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗

“pseudoexpectation”



Pseudoexpectation program Vector program

Solve quantum Lasserre hierarchy
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𝑣𝑣𝑘𝑘 𝐻𝐻 ≔ max �
𝜙𝜙∈𝒫𝒫𝑛𝑛 2𝑘𝑘

𝑐𝑐 𝜙𝜙 𝜙𝜙

Variables: 𝜏𝜏 ∶ 𝜏𝜏 ∈ 𝒫𝒫𝑛𝑛 2𝑘𝑘

Constraints:

• 𝐼𝐼 = 1

• ℳ𝑘𝑘 ∈ ℂ𝑛𝑛
𝒪𝒪 𝑘𝑘 ×𝑛𝑛𝒪𝒪 𝑘𝑘

 : ℳ𝑘𝑘 𝜎𝜎, 𝜏𝜏 ≔ 𝜎𝜎𝜎𝜎  for any 
𝜎𝜎, 𝜏𝜏 ∈ 𝒫𝒫𝑛𝑛 𝑘𝑘

ℳ𝑘𝑘 ≽ 0

• Other symmetries

𝑣𝑣𝑘𝑘 𝐻𝐻 ≔ max �
𝜙𝜙∈𝒫𝒫𝑛𝑛 2𝑘𝑘

𝑐𝑐 𝜙𝜙 𝜙𝜙

Variables: 𝜏𝜏 ∈ ℂ𝑑𝑑: 𝜏𝜏 ∈ 𝒫𝒫𝑛𝑛 𝑘𝑘  
                                                    (any 𝑑𝑑 ≥ 𝒫𝒫𝑛𝑛 𝑘𝑘 )

Constraints:

• 𝜏𝜏 𝜏𝜏 = 1

• 𝜏𝜏 𝜎𝜎 = 𝜏𝜏𝜏𝜏

 They yield the same SDP

 Vector version is more convenient for rounding



Max Cut Quantum Max Cut (ℒ1)

Parallels between MC and QMC: relaxation
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𝑣𝑣𝑀𝑀𝑀𝑀 ≔ max �
𝑖𝑖𝑖𝑖∈𝐸𝐸

1 − 𝑍𝑍𝑖𝑖 𝑍𝑍𝑗𝑗
2

𝑠𝑠. 𝑡𝑡.  𝑍𝑍𝑖𝑖 𝑍𝑍𝑖𝑖 = 1 ∀𝑖𝑖 ∈ 𝑉𝑉
 𝑍𝑍𝑖𝑖 ∈ ℝ𝑑𝑑  ∀𝑖𝑖 ∈ 𝑉𝑉

𝑣𝑣𝑄𝑄𝑀𝑀𝑀𝑀 ≔ max �
𝑖𝑖𝑖𝑖∈𝐸𝐸

1 − 𝑋𝑋𝑖𝑖 𝑋𝑋𝑗𝑗 − 𝑌𝑌𝑖𝑖 𝑌𝑌𝑗𝑗 − 𝑍𝑍𝑖𝑖 𝑍𝑍𝑗𝑗
4

𝑠𝑠. 𝑡𝑡.  𝜏𝜏𝑖𝑖 𝜏𝜏𝑖𝑖 = 1 ∀𝑖𝑖 ∈ 𝑉𝑉, 𝜏𝜏 ∈ 𝑋𝑋,𝑌𝑌,𝑍𝑍
 𝜏𝜏𝑖𝑖 𝜎𝜎𝑖𝑖 = 0 ∀𝑖𝑖 ∈ 𝑉𝑉, 𝜏𝜏,𝜎𝜎 ∈ 𝑋𝑋,𝑌𝑌,𝑍𝑍 , 𝜏𝜏 ≠ 𝜎𝜎
 𝜏𝜏𝑖𝑖 ∈ ℝ𝑑𝑑  ∀𝑖𝑖 ∈ 𝑉𝑉, 𝜏𝜏 ∈ 𝑋𝑋,𝑌𝑌,𝑍𝑍

𝑣𝑣𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀 ≔ max �
𝑖𝑖𝑖𝑖∈𝐸𝐸

1 − 3 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗

4

𝑠𝑠. 𝑡𝑡.  𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 = 1 ∀𝑖𝑖 ∈ 𝑉𝑉
 𝑊𝑊𝑖𝑖 ∈ ℝ𝑑𝑑  ∀𝑖𝑖 ∈ 𝑉𝑉



Max Cut Quantum Max Cut (ℒ1)

Parallels between MC and QMC: rounding 
algorithms
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Input: 𝑍𝑍𝑖𝑖 ∈ ℝ𝑑𝑑 for each 𝑖𝑖 ∈ 𝑉𝑉

1. Sample 𝑟𝑟 ∼ 𝒩𝒩 0, 𝐼𝐼

2. Output 𝑢𝑢𝑖𝑖 ≔ sgn 𝑍𝑍𝑖𝑖 𝑟𝑟 ∈ ±1

Goemans-Williamson

Input: 𝑊𝑊𝑖𝑖 ∈ ℝ𝑑𝑑 for each 𝑖𝑖 ∈ 𝑉𝑉

1. Sample 𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑦𝑦 , 𝑟𝑟𝑧𝑧 ∼ 𝒩𝒩 0, 𝐼𝐼

2. Output 𝑢𝑢𝑖𝑖 ≔ Unit 𝑊𝑊𝑖𝑖 𝑟𝑟𝑥𝑥 , 𝑊𝑊𝑖𝑖 𝑟𝑟𝑦𝑦 , 𝑊𝑊𝑖𝑖 𝑟𝑟𝑧𝑧

Bloch vector 𝜌𝜌𝑖𝑖 =
1
2 (𝐼𝐼 + 𝑢𝑢𝑖𝑖 1𝑋𝑋𝑖𝑖 + 𝑢𝑢𝑖𝑖 2𝑌𝑌𝑖𝑖

            + 𝑢𝑢𝑖𝑖 3𝑍𝑍𝑖𝑖)

𝜌𝜌 = �
𝑖𝑖∈[𝑛𝑛]

𝜌𝜌𝑖𝑖

(𝜌𝜌𝑖𝑖 is a pure state)

product state
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Input: 𝑍𝑍𝑖𝑖 ∈ ℝ𝑑𝑑 for each 𝑖𝑖 ∈ 𝑉𝑉

1. Sample 𝑟𝑟 ∼ 𝒩𝒩 0, 𝐼𝐼

2. Output 𝑢𝑢𝑖𝑖 ≔ Unit 𝑍𝑍𝑖𝑖 𝑟𝑟 ∈ ±1

Input: 𝑊𝑊𝑖𝑖 ∈ ℝ𝑑𝑑 for each 𝑖𝑖 ∈ 𝑉𝑉

1. Sample 𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑦𝑦 , 𝑟𝑟𝑧𝑧 ∼ 𝒩𝒩 0, 𝐼𝐼

2. Output 𝑢𝑢𝑖𝑖 ≔ Unit 𝑊𝑊𝑖𝑖 𝑟𝑟𝑥𝑥 , 𝑊𝑊𝑖𝑖 𝑟𝑟𝑦𝑦 , 𝑊𝑊𝑖𝑖 𝑟𝑟𝑧𝑧

𝑖𝑖 𝑗𝑗 𝑖𝑖 𝑗𝑗

val = ⁄1 − 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 2 val = ⁄1 − 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 4

𝔼𝔼𝑟𝑟 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 = 𝔼𝔼
𝑍𝑍𝑖𝑖 𝑟𝑟

| 𝑍𝑍𝑖𝑖 𝑟𝑟 |
⋅
𝑍𝑍𝑖𝑖 𝑟𝑟
𝑍𝑍𝑖𝑖 𝑟𝑟 𝔼𝔼𝑅𝑅= 𝑟𝑟𝑥𝑥 𝑟𝑟𝑦𝑦 𝑟𝑟𝑧𝑧 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 = 𝔼𝔼

𝑅𝑅 𝑊𝑊𝑖𝑖

𝑅𝑅 𝑊𝑊𝑖𝑖
,
𝑅𝑅 𝑊𝑊𝑗𝑗

𝑅𝑅 𝑊𝑊𝑗𝑗

fval = ⁄1 − 𝑍𝑍𝑖𝑖 𝑍𝑍𝑗𝑗 2 fval = ⁄1 − 3 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 4 
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Input: 𝑍𝑍𝑖𝑖 ∈ ℝ𝑑𝑑 for each 𝑖𝑖 ∈ 𝑉𝑉

1. Sample 𝑟𝑟 ∼ 𝒩𝒩 0, 𝐼𝐼

2. Output 𝑢𝑢𝑖𝑖 ≔ Unit 𝑍𝑍𝑖𝑖 𝑟𝑟 ∈ ±1

Input: 𝑊𝑊𝑖𝑖 ∈ ℝ𝑑𝑑 for each 𝑖𝑖 ∈ 𝑉𝑉

1. Sample 𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑦𝑦 , 𝑟𝑟𝑧𝑧 ∼ 𝒩𝒩 0, 𝐼𝐼

2. Output 𝑢𝑢𝑖𝑖 ≔ Unit 𝑊𝑊𝑖𝑖 𝑟𝑟𝑥𝑥 , 𝑊𝑊𝑖𝑖 𝑟𝑟𝑦𝑦 , 𝑊𝑊𝑖𝑖 𝑟𝑟𝑧𝑧

Lemma (Briët et al. ’14).    Let 𝑢𝑢, 𝑣𝑣 be unit vectors in ℝ𝑑𝑑 and let 𝑅𝑅 ∈ ℝ𝑘𝑘×𝑑𝑑 be a random matrix whose entries 
are i.i.d. Gaussian 𝒩𝒩 0,1 . Then,

𝔼𝔼
𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅

,
𝑅𝑅𝑣𝑣
𝑅𝑅𝑣𝑣

= 𝐹𝐹 𝑘𝑘, 𝑢𝑢, 𝑣𝑣

Some hypergeometric function (explicitly 
computable)
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Input: 𝑍𝑍𝑖𝑖 ∈ ℝ𝑑𝑑 for each 𝑖𝑖 ∈ 𝑉𝑉

1. Sample 𝑟𝑟 ∼ 𝒩𝒩 0, 𝐼𝐼

2. Output 𝑢𝑢𝑖𝑖 ≔ Unit 𝑍𝑍𝑖𝑖 𝑟𝑟 ∈ ±1

Input: 𝑊𝑊𝑖𝑖 ∈ ℝ𝑑𝑑 for each 𝑖𝑖 ∈ 𝑉𝑉

1. Sample 𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑦𝑦 , 𝑟𝑟𝑧𝑧 ∼ 𝒩𝒩 0, 𝐼𝐼

2. Output 𝑢𝑢𝑖𝑖 ≔ Unit 𝑊𝑊𝑖𝑖 𝑟𝑟𝑥𝑥 , 𝑊𝑊𝑖𝑖 𝑟𝑟𝑦𝑦 , 𝑊𝑊𝑖𝑖 𝑟𝑟𝑧𝑧

𝔼𝔼𝑟𝑟 val =
1 − 𝐹𝐹 1, 𝑍𝑍𝑖𝑖 𝑍𝑍𝑗𝑗

2
𝔼𝔼𝑟𝑟𝑥𝑥,𝑟𝑟𝑦𝑦,𝑟𝑟𝑧𝑧 val =

1 − 𝐹𝐹 3, 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗

4

𝑖𝑖 𝑗𝑗 𝑖𝑖 𝑗𝑗

fval = ⁄1 − 𝑍𝑍𝑖𝑖 𝑍𝑍𝑗𝑗 2 fval = ⁄1 − 3 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 4 
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Input: 𝑍𝑍𝑖𝑖 ∈ ℝ𝑑𝑑 for each 𝑖𝑖 ∈ 𝑉𝑉

1. Sample 𝑟𝑟 ∼ 𝒩𝒩 0, 𝐼𝐼

2. Output 𝑢𝑢𝑖𝑖 ≔ Unit 𝑍𝑍𝑖𝑖 𝑟𝑟 ∈ ±1

Input: 𝑊𝑊𝑖𝑖 ∈ ℝ𝑑𝑑 for each 𝑖𝑖 ∈ 𝑉𝑉

1. Sample 𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑦𝑦 , 𝑟𝑟𝑧𝑧 ∼ 𝒩𝒩 0, 𝐼𝐼

2. Output 𝑢𝑢𝑖𝑖 ≔ Unit 𝑊𝑊𝑖𝑖 𝑟𝑟𝑥𝑥 , 𝑊𝑊𝑖𝑖 𝑟𝑟𝑦𝑦 , 𝑊𝑊𝑖𝑖 𝑟𝑟𝑧𝑧

𝛼𝛼 =
𝔼𝔼𝑟𝑟 val

fval
≥ min

𝑡𝑡∈ −1,1

1 − 𝐹𝐹 1, 𝑡𝑡
1 − 𝑡𝑡 𝛼𝛼 =

𝔼𝔼𝑟𝑟𝑥𝑥,𝑟𝑟𝑦𝑦,𝑟𝑟𝑧𝑧 val
fval

≥ min
𝑡𝑡∈ − ⁄1,1 3

1 − 𝐹𝐹 3, 𝑡𝑡
1 − 3𝑡𝑡

𝑖𝑖 𝑗𝑗 𝑖𝑖 𝑗𝑗

fval = ⁄1 − 𝑍𝑍𝑖𝑖 𝑍𝑍𝑗𝑗 2 fval = ⁄1 − 3 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 4 

≈ 0.878 ≈ 0.498
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Classical max cut: No.

• Khot-Kindler-Mossel-O'Donnell ’07: Assuming Unique Game Conjecture, it is NP-hard to achieve 
(0.878+𝜖𝜖)-approximation for MC

• Raghavendra ’08, Raghavendra-Steurer ’09: Degree-2 SoS (level 1 SDP) is the best approximation 
algorithm for all constraints satisfaction problems (CSPs), assuming UGC

Quantum max cut: possible!

• If only using product state, the approximation ratio upper bound is 0.5 > 0.498

𝑖𝑖 𝑗𝑗

val = ⁄1 − 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 4 ≤ 0.5

opt = 1
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𝛾𝛾 ≔ −0.919 … is a critical point

Edges with 𝑊𝑊𝑖𝑖 𝑊𝑊𝑖𝑖 > 𝛾𝛾 have 

approximation ratio ≥ 1
2
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Case 1: “small” edges

Case 2: “large” edges

𝑖𝑖 𝑗𝑗

𝑊𝑊𝑖𝑖 𝑊𝑊𝑖𝑖 ∈ [−1, 𝛾𝛾)
direct assignment

𝛼𝛼 ≥ ⁄1 2

𝑖𝑖 𝑗𝑗

𝑖𝑖 𝑗𝑗

𝑊𝑊𝑖𝑖 𝑊𝑊𝑖𝑖 ∈ 𝛾𝛾, ⁄1 3

1
2
𝐼𝐼 − 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗

𝛼𝛼 = ⁄1 2

Gaussian rounding

0 1
1 0

⊗
⊗

w.p.  ⁄1 2
w.p.  ⁄1 2

𝑖𝑖 𝑗𝑗

𝜌𝜌𝑖𝑖 𝜌𝜌𝑗𝑗



Conflict vertices
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𝑖𝑖

𝑗𝑗 𝑘𝑘

large small
𝑖𝑖

𝑗𝑗 𝑘𝑘

small small

Fact.  The small edges form a matching in 
the graph
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𝑖𝑖

𝑗𝑗 𝑘𝑘

large small𝑖𝑖

𝑗𝑗 𝑘𝑘

small small

Fact.  The small edges form a matching in 
the graph

small

𝑖𝑖

𝑗𝑗 𝑘𝑘

large small
large



Conflict vertices
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𝑖𝑖

𝑗𝑗 𝑘𝑘

𝑖𝑖

𝑗𝑗 𝑘𝑘

small small

Fact.  The small edges form a matching in 
the graph

𝑖𝑖

𝑗𝑗 𝑘𝑘𝜌𝜌𝑗𝑗

We round a vertex only it does not 
adjacent to any small edge

large small
large
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• Two qubits 𝑖𝑖 and 𝑗𝑗 are not entangled

• 𝜌𝜌𝑖𝑖 = 𝐼𝐼 (i.e. 0  w.p. 0.5 and 1  w.p. 0.5)

• Then, no matter what 𝜌𝜌𝑗𝑗  is, 
val = tr ℎ𝑖𝑖𝑖𝑖𝜌𝜌𝑖𝑖 ⊗ 𝜌𝜌𝑗𝑗 = ⁄1 4

We need to show that the SDP value fval < ⁄1 2 for 
this edge:

Lemma. If an edge 𝑖𝑖𝑖𝑖 has 𝑊𝑊𝑖𝑖 𝑊𝑊𝑘𝑘 < 𝛾𝛾, then any 
adjacent edge 𝑖𝑖𝑖𝑖 has 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 > ⁄−1 3

 fval = ⁄1 − 3 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 4 < ⁄1 2

 The small edges form a matching

𝑖𝑖

𝑗𝑗 𝑘𝑘

𝑖𝑖

𝑗𝑗 𝑘𝑘𝜌𝜌𝑗𝑗

We round a large edge only if it does 
not intersect with any small edge



Full algorithm
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1. Solve the level 2 quantum Lasserre hierarchy ℒ2 for 𝐻𝐻

2. Let 𝑆𝑆 be the set of small edges

3. Let 𝐵𝐵 ≔ {𝑖𝑖 ∈ 𝑉𝑉:∀𝑗𝑗, 𝑖𝑖𝑖𝑖 ∉ 𝑆𝑆}

4. Gaussian rounding for 𝑖𝑖 ∈ 𝐵𝐵, and let 𝜌𝜌𝑖𝑖 be the resulting state

5. Output the state

𝜌𝜌 = �
𝑖𝑖𝑖𝑖∈𝐿𝐿

𝐼𝐼 − 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗
4

�
𝑘𝑘∈B

𝜌𝜌𝑘𝑘

Theorem (Parekh-Thompson ’22).

There exists an efficient classical algorithm that approximates QMC using product states and 
achieves the optimal ⁄1 2-approximation ratio

(mixed) product state
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Lemma. If an edge 𝑖𝑖𝑖𝑖 has 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 < 𝛾𝛾, then any adjacent edge 𝑖𝑖𝑖𝑖 has 𝑊𝑊𝑖𝑖 𝑊𝑊𝑘𝑘 > ⁄−1 3

• Physical intuition: Monogamy of entanglement



Proof of the key lemma
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Lemma. If an edge 𝑖𝑖𝑖𝑖 has 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 < 𝛾𝛾, then any adjacent edge 𝑖𝑖𝑖𝑖 has 𝑊𝑊𝑖𝑖 𝑊𝑊𝑘𝑘 > ⁄−1 3

• Unitary SWAP operator: 𝑆𝑆𝑖𝑖𝑖𝑖 = ⁄𝐼𝐼 + 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 + 𝑌𝑌𝑖𝑖𝑌𝑌𝑗𝑗 + 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗 2

• 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 = ⁄𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 + 𝑌𝑌𝑖𝑖𝑌𝑌𝑗𝑗 + 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗 3 = ⁄2 𝑆𝑆𝑖𝑖𝑖𝑖 − 1 3
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Lemma. If an edge 𝑖𝑖𝑖𝑖 has 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 < 𝛾𝛾, then any adjacent edge 𝑖𝑖𝑖𝑖 has 𝑊𝑊𝑖𝑖 𝑊𝑊𝑘𝑘 > ⁄−1 3

• Unitary SWAP operator: 𝑆𝑆𝑖𝑖𝑖𝑖 = ⁄𝐼𝐼 + 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 + 𝑌𝑌𝑖𝑖𝑌𝑌𝑗𝑗 + 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗 2

• 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 = ⁄𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 + 𝑌𝑌𝑖𝑖𝑌𝑌𝑗𝑗 + 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗 3 = ⁄2 𝑆𝑆𝑖𝑖𝑖𝑖 − 1 3

• 𝑊𝑊𝑖𝑖 𝑊𝑊𝑗𝑗 < 𝛾𝛾 is equivalent to 𝑆𝑆𝑖𝑖𝑖𝑖 < ⁄3𝛾𝛾 + 1 2

• 𝑊𝑊𝑖𝑖 𝑊𝑊𝑘𝑘 > ⁄−1 3 is equivalent to 𝑆𝑆𝑖𝑖𝑖𝑖 > 0

If 𝑆𝑆𝑖𝑖𝑖𝑖 < ⁄3𝛾𝛾 + 1 2, then any adjacent edge 𝑖𝑖𝑖𝑖 has 𝑆𝑆𝑖𝑖𝑖𝑖 > 0
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Consider the Gram matrix of 𝐼𝐼 , 𝑆𝑆12 , 𝑆𝑆13 , 𝑆𝑆23 : 
�𝑀𝑀 𝑃𝑃,𝑄𝑄 ≔ 𝑃𝑃 𝑄𝑄  ∀ 𝑃𝑃,𝑄𝑄 ∈ {𝐼𝐼, 𝑆𝑆12, 𝑆𝑆13, 𝑆𝑆23}

• By the PSD constraint in ℒ2, �𝑀𝑀 ≽ 0

• Define 𝑀𝑀 ≔ ⁄�𝑀𝑀 + �𝑀𝑀⊤ 2 ∈ ℝ4×4, 𝑀𝑀 ≽ 0

• 𝑀𝑀 𝑃𝑃,𝑃𝑃 = ⁄𝑃𝑃2 + 𝑃𝑃2 2 = 𝐼𝐼 = 1

• 𝑀𝑀 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝐼𝐼 = 𝑆𝑆𝑖𝑖𝑖𝑖

• 𝑀𝑀 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑖𝑖𝑖𝑖 = ⁄𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑗𝑗𝑗𝑗 − 𝐼𝐼 2

Identity for SWAP operator:

𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖 = ⁄𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑗𝑗𝑗𝑗 − 𝐼𝐼 2

1 𝑝𝑝 𝑞𝑞 𝑟𝑟

𝑝𝑝 1
𝑠𝑠 − 1

2
𝑠𝑠 − 1

2

𝑞𝑞
𝑠𝑠 − 1

2
1

𝑠𝑠 − 1
2

𝑟𝑟
𝑠𝑠 − 1

2
𝑠𝑠 − 1

2
1

𝑀𝑀 =

𝑝𝑝 = 𝑆𝑆12 , 𝑞𝑞 = 𝑆𝑆13 , 𝑟𝑟 = 𝑆𝑆23 , 
𝑠𝑠 = 𝑝𝑝 + 𝑞𝑞 + 𝑟𝑟

degree-4
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Claim 1.   𝑀𝑀 ≽ 0 is equivalent to:

0 ≤ 𝑝𝑝 + 𝑞𝑞 + 𝑟𝑟 ≤ 3
𝑝𝑝2 + 𝑞𝑞2 + 𝑟𝑟2 + 2 𝑝𝑝 + 𝑞𝑞 + 𝑟𝑟 − 2 𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝 + 𝑞𝑞𝑞𝑞 ≤ 3

1 𝑝𝑝 𝑞𝑞 𝑟𝑟

𝑝𝑝 1
𝑠𝑠 − 1

2
𝑠𝑠 − 1

2

𝑞𝑞
𝑠𝑠 − 1

2
1

𝑠𝑠 − 1
2

𝑟𝑟
𝑠𝑠 − 1

2
𝑠𝑠 − 1

2
1

𝑀𝑀 =

Schur complement:

For any symmetric matrix 𝑀𝑀 of the form

𝑀𝑀 = 1 𝑏𝑏⊤
𝑏𝑏 𝐶𝐶

𝑀𝑀 ≽ 0 if and only if:

1. 𝐶𝐶 ≽ 0

2. 𝐼𝐼 − 𝐶𝐶𝐶𝐶+ 𝑏𝑏 = 0

3. 1 − 𝑏𝑏⊤𝐶𝐶+𝑏𝑏 ≥ 0



Proof of the key lemma

October 9, 2025 39

Lemma. If 𝑆𝑆𝑖𝑖𝑖𝑖 < ⁄3𝛾𝛾 + 1 2, then any adjacent edge 𝑖𝑖𝑖𝑖 has 𝑆𝑆𝑖𝑖𝑖𝑖 > 0

Proof.

• Solving the inequalities:
0 ≤ 𝑝𝑝 + 𝑞𝑞 + 𝑟𝑟 ≤ 3

𝑝𝑝2 + 𝑞𝑞2 + 𝑟𝑟2 + 2 𝑝𝑝 + 𝑞𝑞 + 𝑟𝑟 − 2 𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝 + 𝑞𝑞𝑞𝑞 ≤ 3

• We get that if 𝑝𝑝 ≤ − ⁄3 2, then 𝑞𝑞 ≥ 0 (equality attained with 𝑝𝑝 = − ⁄3 2 , 𝑞𝑞 = 0, 𝑟𝑟 = ⁄3 2)

• Since ⁄3𝛾𝛾 + 1 2 < −0.878 < − 3
2
≈ −0.866, we are done

∎
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(Gribling-Sinjorgo-Sotirov ’25)
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